Why so negative? A General Approach to Quasi-Probabilistic Likelihood Ratio Estimation with Negative Weighted Data 13-06-24

S.Jiggins (DESY) M.Drnevich, Judith Katzy, Kyle Cranmer

Quasi-Probabilistic Distributions

→ Quantum mechanical systems are unique, in that there are objects that can be interpreted via quasi-probabilities that have 'probabilistic-like terms' that can be negative :

 $|\Phi_1(\mathbf{x}) + \Phi_2(\mathbf{x})| = |\Phi_1(\mathbf{x})|^2 + |\Phi_2(\mathbf{x})|^2 + 2\mathcal{R}(\Phi_1(\mathbf{x})\Phi_2^*(\mathbf{x}))$

"It is usual to suppose that, since the probabilities of events must be positive, a theory which gives negative numbers for such quantities must be absurd ... By discussing a number of examples, I hope to show that they are entirely rational of course, and that their use simplifies calculation and thought in a number of applications."

- Richard Feynman, Negative Probability https://cds.cern.ch/record/154856

Quasi-Probabilistic Distributions

→ Quantum mechanical systems are unique, in that there are objects that can be interpreted via quasi-probabilities that have 'probabilistic-like terms' that can be negative :

 $|\Phi_1(\mathbf{x}) + \Phi_2(\mathbf{x})| = |\Phi_1(\mathbf{x})|^2 + |\Phi_2(\mathbf{x})|^2 + 2\mathcal{R}(\Phi_1(\mathbf{x})\Phi_2^*(\mathbf{x})))$

→ Quantum mechanical observations of an observable (G) are nothing more than averages of all states that contribute:

$$\langle \psi | \hat{G} | \psi \rangle = \operatorname{Tr}(\hat{\rho}\hat{G}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(x,p)g(x,p)dxdp$$

Quasi-probability density (Wigner) function: $-\infty < W(x,p) < \infty$

Remark!

The probability of an observation iof observable G, $p(G_i)$, will always be positive.

```
\rightarrow Gleason's Theorem
```


Quasi-Probabilistic Distributions

→ Quantum mechanical systems are unique, in that there are objects that can be interpreted via quasi-probabilities that have 'probabilistic-like terms' that can be negative :

→ Quantum mechanical observations of an observable (G) are nothing more than averages of all states that contribute:

$$\langle \psi | \hat{G} | \psi \rangle = \operatorname{Tr}(\hat{\rho}\hat{G}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(x,p)g(x,p)dxdp$$

Quasi-probability density (Wigner) function: $-\infty < W(x,p) < \infty$

Quasi-Probabilities: The negative weight problem

Quasi-Probabilities: The negative weight problem

Synthetic Data Generation: Monte Carlo

A Fundamental Conflict of Statistics, Probability, and Information

→ Output of the neural based probabilistic models are concerned only with the $s(x) \in (0, \infty)$

$$P[X \in A] = \int_{A} \left(p_{X} \right) d^{n} x$$
$$p_{X} \ge 0 \forall x$$

Information & Measure Theory

Entropy-based measures:

Average level of *information/surprise* inherent to a random variables outcome (*in F*-space):

 $H(X):=-\int p_X(x)\log(p_X(x))dx$

[1] A. Kolmogorov, Grundbegriffe der wahrscheinlichkeitsrechnung, 1 (Springer Berlin, Heidelberg, 1933), pp. V, 62.
 [2] D. S. Modha and Y. Fainman, "A learning law for density estimation," in IEEE Transactions on Neural Networks, vol. 5, no. 3, pp. 519-523, May 1994, doi: 10.1109/72.286931

A Fundamental Conflict of Statistics, Probability, and Information

→ Output of the neural based probabilistic models must allow for $s(x) \in (-\infty, \infty)$

Statistics & Probability Theory In probability theory the probability triplet (Ω, F, P) adheres to 3 Kolmogorov^[1] axioms with the most relevant being axiom 1:

$$P[X \in A] = \int_{A} \left(p_{X} d^{n} x \right)$$
$$p_{X} \in (-\infty, \infty)$$

Information & Measure Theory

Entropy-based measures:

Average level of *information/surprise* inherent to a random variables outcome (*in F*-space):

 $H(X):=-\int p_X(x)\log(p_X(x))dx$

[1] A. Kolmogorov, Grundbegriffe der wahrscheinlichkeitsrechnung, 1 (Springer Berlin, Heidelberg, 1933), pp. V, 62.
[2] D. S. Modha and Y. Fainman, "A learning law for density estimation," in IEEE Transactions on Neural Networks, vol. 5, no. 3, pp. 519-523, May 1994, doi: 10.1109/72.286931

Context: Likelihood Function

 \rightarrow Likelihood function is key to the *scientific method*:

$$\mathcal{L}(\theta|x) = p_{\theta}(x) = P(X = x|\theta)$$

 \rightarrow This is due to its prolific use in *statistical inferencing* problems via its ratio form:

DESY.

Quasi-Probabilities & ML

→ **Decompose probability measure** into a signed measure:

$$\mathbf{P}[X \in A] = \int_{A} q_X(\mathbf{x}) d\mathbf{x}^n \qquad \qquad \mathbf{P}[X \in A] = \int_{A} q_X(\mathbf{x}) d\mathbf{x}^n = \int_{A} (p_+(\mathbf{x}) - p_-(\mathbf{x})) d\mathbf{x}^n = \int_$$

Known as the Jordan Decomposition.

→ **Decompose probability measure** into a signed measure:

$$\mathbf{P}[X \in A] = \int_{A} q_X(\mathbf{x}) d\mathbf{x}^n \qquad \qquad \mathbf{P}[X \in A] = \int_{A} q_X(\mathbf{x}) d\mathbf{x}^n = \int_{A} (p_+(\mathbf{x}) - p_-(\mathbf{x})) d\mathbf{x}^n = \int_$$

Known as the Jordan Decomposition.

→ Signed Mixture Model decomposition translates to a *mixture* of likelihood ratios:

→ **Decompose probability measure** into a signed measure:

$$\mathbf{P}[X \in A] = \int_{A} q_X(\mathbf{x}) d\mathbf{x}^n \qquad \qquad \mathbf{P}[X \in A] = \int_{A} q_X(\mathbf{x}) d\mathbf{x}^n = \int_{A} (p_+(\mathbf{x}) - p_-(\mathbf{x})) d\mathbf{x}^n = \int_$$

Known as the Jordan Decomposition.

→ Signed Mixture Model decomposition translates to a *mixture* of likelihood ratios:

(1) The sub-likelihood ratios are translated to the positive domain by setting the weights of all data to the absolute value: $w_i \rightarrow |w_i|$

→ **Decompose probability measure** into a signed measure:

$$\mathbf{P}[X \in A] = \int_{A} q_X(\mathbf{x}) d\mathbf{x}^n \qquad \qquad \mathbf{P}[X \in A] = \int_{A} q_X(\mathbf{x}) d\mathbf{x}^n = \int_{A} (p_+(\mathbf{x}) - p_-(\mathbf{x})) d\mathbf{x}^n = \int_$$

Known as the Jordan Decomposition.

→ Signed Mixture Model decomposition translates to a *mixture* of likelihood ratios:

DESY.

→ **Decompose probability measure** into a signed measure:

$$\mathbf{P}[X \in A] = \int_{A} q_X(\mathbf{x}) d\mathbf{x}^n \qquad \qquad \mathbf{P}[X \in A] = \int_{A} q_X(\mathbf{x}) d\mathbf{x}^n = \int_{A} (p_+(\mathbf{x}) - p_-(\mathbf{x})) d\mathbf{x}^n = \int_$$

Train separate & unique

calibrated NLREs (see

CARL) for various permutations of:

 $r_{i,j} = \frac{P^{[+,-]}(y=0 | x)}{P^{[+,-]}(y=1 | x)}$

Known as the Jordan Decomposition.

→ Signed Mixture Model decomposition translates to a *mixture* of likelihood ratios:

$$r(x|\theta_0, \theta_1, \boldsymbol{c}) = \frac{\sum_{i=1}^{[+,-]} c_{i,1} p_i(\boldsymbol{x}|\theta_1)}{\sum_{j=1}^{[+,-]} c_{j,0} p_j(\boldsymbol{x}|\theta_0)}$$

$$r_{q}(x|y_{0}, y_{1}, c) = \sum_{i} \left[\sum_{j} \frac{c_{j,0}}{c_{i,1}} \right]^{\text{indem}}$$

Co-efficients defined by the normalised ratio of +ve/-ve subsets of the data to the total class weight

$$c_i \sim \frac{\sum w_y^{\pm}}{\sum w_y}$$

Nonnegative LR Application - LPARE Loss Landscape 0.492938 0.49292506 Initialization Minimun 0.49292503 2.75 0.492936 0.49292500 2.50 0.492934 0.49292497 2.25 0.492932 0.49292494 5 2.00 0.49292491 0.492930 1.75 0.49292488 0.492928 1.50 0.49292485 0.492926 1.25 0.49292482 1.00 0.492924 0.49292479 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 Co

$$\rightarrow \mathcal{L}_{PARE}(\hat{y}, y) \equiv (1 - \hat{y} \cdot y)^2$$

Transformation of the signed neural likelihood ratio estimator : $\hat{y}(\mathbf{x}) = \frac{y_0 + y_1 r_q(\mathbf{x})}{y_0^2 + y_1^2 r_q(\mathbf{x})}$

How does this look? Gaussian → Camel Function

Toy Model

Source: 2D Gaussian Distribution

$$p(x, y; \sigma) = \frac{1}{2\pi\sigma^2} \cdot \exp\left(-\frac{1}{2}\frac{x^2 + y^2}{\sigma^2}\right) = p(x; \sigma) p(y; \sigma)$$

Where: $\sigma = 2.5$

Target: 2D Camel Distribution

$$p(x,y;A,B,\sigma_1,\sigma_2) = \frac{1}{A+B} \cdot [A \cdot p(x,y;\sigma_1) + B \cdot p(x,y;\sigma_2)]$$

Where: $\sigma_1 = 2$, $\sigma_2 = 1.2$ A = 2, B = -1

Toy Model

Source (y=0): 2D Gaussian Distribution

$p(x, y; \sigma) = \frac{1}{2\pi\sigma^2} \cdot \exp(-\frac{1}{2\pi\sigma^2})$	$-\frac{1}{2}\frac{x^2+y^2}{\sigma^2}) = p(x;\sigma)p(y;\sigma)$
--	--

Where: $\sigma = 2.5$

Target (y=1):2D Camel Distribution

 $p(x,y;A,B,\sigma_1,\sigma_2) = \frac{1}{A+B} \cdot [A \cdot p(x,y;\sigma_1) + B \cdot p(x,y;\sigma_2)]$

Where: $\sigma_1 = 2$, $\sigma_2 = 1.2$ A = 2, B = -1

1) Basic Model: Standard MLP estimating the likelihood ratio:

&

2) Signed Mixture Model

Signed Mixture Model +:

4 standard MLPs comprising the signed mixture likelihood ratio with configurable co-efficients (c_i):

 $-\gamma \nabla_{c_i^t} \mathcal{L}(s(x; c_i^t)),$

 ⊕ backwards propagation update enabled for all 4 blocks

 $-\gamma \nabla_{\phi^t} \mathcal{L}(s(x; \phi^t))$

3) Optimal: Analytic solution for the optimal classifier/likelihood ratio:

$$r(x|\theta_0,\theta_1,c) = \frac{p(x|\theta_1)}{p(x|\theta_0)}$$

Neural Models

&

2) Signed Mixture Model

Signed Mixture Model +:

4 standard MLPs comprising the signed mixture likelihood ratio with configurable co-efficients (c_i):

 $-\gamma \nabla_{c_i^t} \mathcal{L}(s(x; c_i^t)),$

 ⊕ backwards propagation update enabled for all 4 blocks

 $-\gamma \nabla_{\phi^t} \mathcal{L}(s(x; \phi^t))$

3) Optimal: Analytic solution for the optimal classifier/likelihood ratio:

 $r(x|\theta_0, \theta_1, c) = \frac{p(x|\theta_1)}{p(x|\theta_0)}$

Toy Model: Observation space

Per bin pull between the reference and the target

Distribution of pulls across all bins. Ideally want it to be Gaussian DESY.

Toy Model: Observation space

Toy Model: Sample Space

х

Toy Model: Sample Space

SMEFT example: ggHH

 \rightarrow Synthetic data generated for gg $\rightarrow hh$ process as an example domain adaptation problem:

SMEFT example: ggHH

 \rightarrow Synthetic data generated for gg $\rightarrow hh$ process as an example domain adaptation problem:

SMEFT example: ggHH

 $\vec{x} \in \mathbb{R}^{16}$

28

\rightarrow Synthetic data generated for gg $\rightarrow hh$ process as an example domain adaptation problem:

→ **Input domain**, given by the 4-vectors of the final state products:

 $gg \rightarrow hh \rightarrow 4\mu + 1j$

ggHH: m_{hh} sample space

Conclusion

\rightarrow Quasi-Probabilistic neural likelihood ratio estimation (QNLRE):

Decompose likelihood ratio problem using signed probability spaces to be quasi-probabilistic in nature:

$$r(x; \mathbf{c}) = \left[\frac{c_0 p_+(x|Y=0)}{c_1 p_+(x|Y=1)} + \frac{(1-c_0)p_-(x|Y=0)}{c_1 p_+(x|Y=1)}\right]^{-1} \\ + \left[\frac{c_0 p_+(x|Y=0)}{(1-c_1)p_-(x|Y=1)} + \frac{(1-c_0)p_-(x|Y=0)}{(1-c_1)p_-(x|Y=1)}\right]^{-1}$$

Mitigate -ve weight induced training variance in NLRE
problems by casting -ve weighted data to positive domain
$$w_i \rightarrow |w_i|$$
: $\operatorname{Var}_{\tilde{X},Y,W}(\theta_i^{t+1}) - \operatorname{Var}_{X,Y}(\theta_i^{t+1})$
 $= \frac{\gamma^2}{N_{batch}} \mathbb{E}_{\tilde{X},Y,W} \left[(W^2 - W) \cdot \left(\frac{\partial}{\partial \theta_i} \Big|_{\theta_i = \theta_i^t} \mathcal{L}(s(\tilde{X}; \theta^t), Y) \right)^2 \right]$

 \checkmark

New loss function to optimise QNLRE models that avoid divergences in the optimisation problem:

$$\mathbf{c}^* = \operatorname{argmin}_{\mathbf{c} \in \mathbb{R}^2} \mathbb{E}_{X, Y, W} \left[\left| 1 - \left(\frac{Y_0 + Y_1 \hat{r}(x; \mathbf{c})}{Y_0^2 + Y_1^2 \hat{r}(x; \mathbf{c})} \right) Y \right|^2 W \right]$$

- → Examples of quasi-probabilistic systems in HEP & beyond experiments:
 - Heavy Neutral Higgs at the LHC ATLAS-CONF-2024-001
 - NLO SMEFT ggHH 2204.13045
 - Negative Probabilities in Financial Modeling https://dx.doi.org/10.2139/ssrn.1773077

Context: Likelihood Function

 \rightarrow Likelihood function is key to the *scientific method*:

$$\mathcal{L}(\theta|x) = p_{\theta}(x) = P(X = x|\theta)$$

 \rightarrow This is due to its prolific use in *statistical inferencing* problems via its ratio form:

Context: Likelihood Function

 \rightarrow Likelihood function is key to the *scientific method*:

$$\mathcal{L}(\theta|x) = p_{\theta}(x) = P(X = x|\theta)$$

 \rightarrow This is due to its prolific use in *statistical inferencing* problems via its ratio form:

→ **Decompose probability measure** into a signed measure:

$$\mathbf{P}[X \in A] = \int_{A} q_X(\mathbf{x}) d\mathbf{x}^n$$

$$\mathbf{P}[X \in A] = \int_{A} q_X(\mathbf{x}) d\mathbf{x}^n = \int_{A} (p_+(\mathbf{x}) - p_-(\mathbf{x})) d\mathbf{x}^n$$
For a probability triplet (Ω, \mathcal{F}, P) , one needs to show that
the σ -additive function $\mu : \mathcal{F} \to \mathbb{R}$ can be a signed measure
for any $E \in \mathcal{F}$:

$$\mu(E) = \mu^+(E) - \mu^-(E) \qquad (2)$$