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→ Quantum mechanical systems are unique, in that there are 
     objects that can be interpreted via quasi-probabilities that have
     ‘probabilistic-like terms’ that can be negative :

Quasi-Probabilistic Distributions

|Φ1(x) + Φ2(x)| = |Φ1(x)|2 + |Φ2(x)|2 + 2R (Φ1(x)Φ*2(x))

“It is usual to suppose that, since the probabilities of events must be positive, a theory which gives negative 
numbers for such quantities must be absurd … By discussing a number of examples, I hope to show that 
they are entirely rational of course, and that their use simplifies calculation and thought in a number of 

applications.” 

- Richard Feynman, Negative Probability https://cds.cern.ch/record/154856

https://cds.cern.ch/record/154856
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|Φ1(x) + Φ2(x)| = |Φ1(x)|2 + |Φ2(x)|2 + 2R (Φ1(x)Φ*2(x))

→ Quantum mechanical systems are unique, in that there are 
     objects that can be interpreted via quasi-probabilities that have
     ‘probabilistic-like terms’ that can be negative :

→ Quantum mechanical observations of an observable (G) are 
     nothing more than averages of all states that contribute:

Quasi-Probabilistic Distributions

Quasi-probability density (Wigner) 
function:

-∞ < W(x,p) < ∞

Remark!

The probability of an observation i 
of observable G, p(Gi), will always 

be positive.

→ Gleason’s Theorem
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→ Quantum mechanical systems are unique, in that there are 
     objects that can be interpreted via quasi-probabilities that have
     ‘probabilistic-like terms’ that can be negative :

→ Quantum mechanical observations of an observable (G) are 
     nothing more than averages of all states that contribute:

Quasi-Probabilistic Distributions

mhh [GeV]

h

h

g

protonproton

μ
μ

μ
μ

Quasi-probability density (Wigner) 
function:

-∞ < W(x,p) < ∞
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Quasi-Probabilities: The negative weight problem

Synthetic Data Generation: Monte Carlo

(1) Uniformly sample points, x = (x1, …, xi), 
uniformly on [a,b] ⊗ [fmin, fmax]:

fs(x) ∈ [fmin, fmax]

(4) Repeat

(2) Accept event based on:
fs(x) < |f(x)|

(3) Assign a weight to the event:
ws,i = ±1

        

f(x)
fmax

x

f (x)
fs (x) ws,i = -1

fmin
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Quasi-Probabilities: The negative weight problem

Synthetic Data Generation: Monte Carlo

(1) Uniformly sample points, x = (x1, …, xi), 
uniformly on [a,b] ⊗ [fmin, fmax]:

fs(x) ∈ [fmin, fmax]

(4) Repeat

(2) Accept event based on:
fs(x) < |f(x)|

(3) Assign a weight to the event:
ws,i = ±1

        

f(x)
fmax

x

f (x)
fs (x) ws,i = -1

fmin

s(x)

Parameter updates of a neural network use the 
weighted loss during backwards propagation:

θk,m

θk,2

θk,1



7

A Fundamental Conflict of Statistics, 
Probability, and Information 

Statistics & Probability Theory
In probability theory the probability triplet 
(Ω, F, P) adheres to 3 Kolmogorov[1] axioms 
with the most relevant being axiom 1:

[1] A. Kolmogorov, Grundbegriffe der wahrscheinlichkeitsrechnung, 1 (Springer Berlin, Heidelberg, 1933), pp. V, 62.
[2] D. S. Modha and Y. Fainman, "A learning law for density estimation," in IEEE Transactions on Neural Networks, 
      vol. 5, no. 3, pp. 519-523, May 1994, doi: 10.1109/72.286931

P [X∈A ]=∫
A

pX d
n x

s(x)
pX≥0∀ x

→ Output of the neural based probabilistic models are 
concerned only with the s(x) ∈ (0, ∞)

Information & Measure Theory

H (X ) :=−∫ pX (x) log ( pX ( x))dx

Entropy-based measures: 
Average level of information/surprise 

inherent to a random variables outcome (in 
F-space):
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A Fundamental Conflict of Statistics, 
Probability, and Information 

Statistics & Probability Theory
In probability theory the probability triplet 
(Ω, F, P) adheres to 3 Kolmogorov[1] axioms 
with the most relevant being axiom 1:

Information & Measure Theory

[1] A. Kolmogorov, Grundbegriffe der wahrscheinlichkeitsrechnung, 1 (Springer Berlin, Heidelberg, 1933), pp. V, 62.
[2] D. S. Modha and Y. Fainman, "A learning law for density estimation," in IEEE Transactions on Neural Networks, 
      vol. 5, no. 3, pp. 519-523, May 1994, doi: 10.1109/72.286931

P [X∈A ]=∫
A

pX d
n x

H (X ) :=−∫ pX (x) log (pX ( x))dx

Entropy-based measures: 
Average level of information/surprise 

inherent to a random variables outcome (in 
F-space):

s(x)

→ Output of the neural based probabilistic models must 
allow for s(x) ∈ (-∞, ∞)

pX∈(−∞ ,∞)
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Context: Likelihood Function

s(x)

→ Likelihood function is key to the scientific method:

→ This is due to its prolific use in statistical inferencing problems via 
     its ratio form:

Neural Likelihood Ratio Estimation
‘Ratio Trick’

For a neural network with configurable set Φ = {wi}Ni=1 parameters 
and a given loss functional L(s) of the form:

 

The extrema ( δL(s)/δs =0 ) of this general loss yields:

Domain Adaptation

Use the density ratio r(x) 
as a mapping function 
between distribution:
r(x): P1(x) → P2(x)

P1(x)
P2(x)  

x

P1(x) . r(x)

⊗ r(x)
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Quasi-Probabilities & ML
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→ Decompose probability measure into a signed measure:

Known as the Jordan Decomposition.

Signed Probability Measures
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→ Decompose probability measure into a signed measure:

Known as the Jordan Decomposition.

→ Signed Mixture Model decomposition translates 
    to a mixture of likelihood ratios:

Signed Probability Measures

Co-efficients defined by the 
normalised ratio of +ve/-ve subsets 
of the data to the total class weight

Train separate & unique 
calibrated NLREs (see 

CARL) for various 
permutations of:

P[+,-](y=0 |x)
P[+,-](y=1 |x)

c i∼
∑ w y

±

∑ w y

r (x∣y 0 , y1 , c)=∑i∑ j

c j , 0
ci ,1

⋅r i , j

For 2 

classes

-1

=

https://github.com/sjiggins/carl-torch


13

r (x∣y 0 , y1 , c)=∑i∑ j

c j , 0
ci ,1

-1

Signed Probability Measures
→ Decompose probability measure into a signed measure:

Known as the Jordan Decomposition.

→ Signed Mixture Model decomposition translates 
    to a mixture of likelihood ratios:

Co-efficients defined by the 
normalised ratio of +ve/-ve subsets 
of the data to the total class weight

c i∼
∑ w y

±

∑ w y

Two Key Points:

(1)
The sub-likelihood ratios are translated to the 

positive domain by setting the weights of all data to 
the absolute value:

wi → |wi|

ri,j =

Train separate & unique 
calibrated NLREs (see 

CARL) for various 
permutations of:

P[+,-](y=0 |x)
P[+,-](y=1 |x)

https://github.com/sjiggins/carl-torch
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Train separate & unique 
calibrated NLREs (see 

CARL) for various 
permutations of:

P[+,-](y=0 |x)
P[+,-](y=1 |x)

ri,j =

r (x∣y 0 , y1 , c)=∑i∑ j

c j , 0
ci ,1

-1

Signed Probability Measures
→ Decompose probability measure into a signed measure:

Known as the Jordan Decomposition.

→ Signed Mixture Model decomposition translates 
    to a mixture of likelihood ratios:

Co-efficients defined by the 
normalised ratio of +ve/-ve subsets 
of the data to the total class weight

c i∼
∑ w y

±

∑ w y

Two Key Points:

(1)
The sub-likelihood ratios are translated to the 

positive domain by setting the weights of all data to 
the absolute value:

wi → |wi|

(2)
All signed information about the prob. measure is 

contained in the constants

https://github.com/sjiggins/carl-torch
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Signed Probability Measures
→ Decompose probability measure into a signed measure:

Known as the Jordan Decomposition.

→ Signed Mixture Model decomposition translates 
    to a mixture of likelihood ratios:

c i∼
∑ w y

±

∑ w y

Co-efficients defined by the 
normalised ratio of +ve/-ve subsets 
of the data to the total class weight

Optimise co-efficients and NNs using 
a new loss function, LPARE :

rq(x∣y 0 , y1 , c)=∑i∑ j

c j , 0
ci ,1

-1

Train separate & unique 
calibrated NLREs (see 

CARL) for various 
permutations of:

P[+,-](y=0 |x)
P[+,-](y=1 |x)

ri,j = Transformation of the signed 
neural likelihood ratio estimator 

using class label y0,1

:

https://github.com/sjiggins/carl-torch
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How does this look?
Gaussian → Camel Function
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Toy Model
Source:  2D Gaussian Distribution 

Where:
σ = 2.5

Target:  2D Camel Distribution 

Where:
σ1 =2,             
A = 2,           

p(x , y ;σ)= 1
2πσ2

⋅exp(−1
2
x2+ y2

σ2
)=p( x ;σ) p( y ;σ) p(x , y ; A ,B ,σ1 ,σ2)=

1
A+B

⋅[ A⋅p (x , y ;σ1)+B⋅p(x , y ;σ2)]

σ2 = 1.2
B = -1
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Toy Model
Source (y=0):  2D Gaussian Distribution 

Where:
σ = 2.5

Target (y=1):  2D Camel Distribution 

Where:
σ1 =2,             
A = 2,           

p(x , y ;σ)= 1
2πσ2

⋅exp(−1
2
x2+ y2

σ2
)=p( x ;σ) p( y ;σ) p(x , y ; A ,B ,σ1 ,σ2)=

1
A+B

⋅[ A⋅p (x , y ;σ1)+B⋅p(x , y ;σ2)]

σ2 = 1.2
B = -1

Map from y=0 → y=1 
using NLRE:

r̂ (x):P0(x)→P1(x)



19

Neural Models

r ( x∣y0 , y1)=

1) Basic Model:
    Standard MLP estimating the likelihood ratio:

2) Signed Mixture Model         &      Signed Mixture Model +:
4 standard MLPs comprising the signed mixture 
likelihood ratio with configurable co-efficients (ci):

    ⊕ backwards propagation update 
        enabled for all 4 blocks

→
s(x )
1−s( x)

r (x∣y0 , y1 , c)=⊕

c0 . 1-c0 .

1-c0 .c0 .

⊕

⊕

c1 c1

1- c11- c1

3) Optimal:
     Analytic solution for the optimal classifier/likelihood ratio:

r ( x∣θ0 ,θ1 , c)=
p(x∣θ1)
p(x∣θ0)
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Neural Models

r ( x∣y0 , y1)=

1) Basic Model:
    Standard MLP estimating the likelihood ratio:

2) Signed Mixture Model         &      Signed Mixture Model +:
4 standard MLPs comprising the signed mixture 
likelihood ratio with configurable co-efficients (ci):

    ⊕ backwards propagation update 
        enabled for all 4 blocks

→
s(x )
1−s( x)

r (x∣y0 , y1 , c)=⊕

c0 . 1-c0 .

1-c0 .c0 .

⊕

⊕

c1 c1

1- c11- c1

3) Optimal:
     Analytic solution for the optimal classifier/likelihood ratio:

r ( x∣θ0 ,θ1 , c)=
p(x∣θ1)
p(x∣θ0)

Total Network Size:
~34.4 MB

Total Network Size:
~35.9 MB
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Toy Model: Observation space

Per bin pull between the reference and the target

χ2 Test Statistic

Q-deformed 
Relative 
Entropy:

Dq=2(B||T)

Distribution of pulls across all bins.
Ideally want it to be Gaussian
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What is happening to the ‘Basic CARL’ Model? Why does it fail to learn 
the dip?

Toy Model: Observation space
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Toy Model: Sample Space

r

r

→ Characteristic shape of the distribution is 
entirely encoded in the radial polar co-ordinate 

‘r’ with angle ‘θ’ uniformly distributed

θ

θ

→ In x/y co-ordinates the negative/positive parts are 
maginalised away concealing the purely -ve region
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Toy Model: Sample Space
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HEP: gg → HH
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mhh [GeV]

SMEFT example: ggHH
→ Synthetic data generated for gg → hh process as an example 
    domain adaptation problem:
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mhh [GeV]

SMEFT example: ggHH
→ Synthetic data generated for gg → hh process as an example 
    domain adaptation problem:

Quantum Intereference
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mhh [GeV]

SMEFT example: ggHH
→ Synthetic data generated for gg → hh process as an example 
    domain adaptation problem:

→ Input domain, given by the 4-vectors of the final state 
     products:

gg → hh → 4μ + 1j

x⃗∈ℝ16

h

h

g

protonproton

μ
μ

μ
μ



29

ggHH: mhh sample space
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→ Quasi-Probabilistic neural likelihood ratio estimation
    (QNLRE):

      Decompose likelihood ratio problem using signed 
               probability spaces to be quasi-probabilistic in nature:

      

      Mitigate -ve weight induced training variance in NLRE
      problems by casting -ve weighted data to positive domain

               wi → |wi|:

      

      New loss function to optimise QNLRE models that avoid 
      divergences in the optimisation problem:

→ Examples of quasi-probabilistic systems in HEP & 
     beyond experiments:

- Heavy Neutral Higgs at the LHC - ATLAS-CONF-2024-001
- NLO SMEFT ggHH - 2204.13045
- Negative Probabilities in Financial Modeling - 
   https://dx.doi.org/10.2139/ssrn.1773077

Conclusion

⊖

https://cds.cern.ch/record/2891813/files/ATLAS-CONF-2024-001.pdf
https://arxiv.org/pdf/2204.13045
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1773077
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Backup
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Context: Likelihood Function
→ Likelihood function is key to the scientific method:

→ This is due to its prolific use in statistical inferencing problems via 
     its ratio form:

Hypothesis Testing

Use the logarithm of the density 
ratio r(x) to calculate confidence in 

excluding hypothesis H0 over H1

Background

Signal  

Obs. = Data

x

Domain Adaptation

Use the density ratio r(x) 
as a mapping function 

between domain spaces 
r(x): X1 → X2

P1(x)
P2(x)  

x

P1(x) . r(x)

⊗ r(x)

Neyman-Pearson 
Lemma
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Context: Likelihood Function

s(x)

→ Likelihood function is key to the scientific method:

→ This is due to its prolific use in statistical inferencing problems via 
     its ratio form:

Neural Likelihood Ratio Estimation

For a neural network with configurable set Φ = {wi}Ni=1 parameters 
and a given loss functional L(s) of the form: 

The extrema ( δL(s)/δs =0 ) of this general loss yields:

Domain Adaptation

Use the density ratio r(x) 
as a mapping function  

r(x): X1 → X2

P1(x)
P2(x)  

x

P1(x) . r(x)

⊗ r(x)
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Signed Probability Measures

→ Decompose probability measure into a signed measure:
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