
SimulationBasedInference.jl: A flexible toolkit for

Bayesian inference with process-based models

Brian Groenke1,2,3 Kristoffer Aalstad4 Jakob Zscheischler1,5 Guillermo Gallego3

Julia Boike2,6

1 UFZ Leipzig, 2AWI Potsdam, 3TU Berlin, 4University of Oslo, 5TU Dresden, 6Humboldt Universität Berlin

What is simulation-based inference?

Mechanistic modeling
and domain expertise Statistics

Machine
learning

Data
assimilation

Hybrid
modeling

Computational
statistics

1

What is simulation-based inference?

Mechanistic modeling
and domain expertise Statistics

Machine
learning

Data
assimilation

Hybrid
modeling

Simulation-
based

inference
(SBI)

Computational
statistics

2

Bayesian inverse modeling

Let s = M(x, s0) represent a forward model (simulator) M with latent states
s, unknown or partially known inputs x, and observation operator y = G(s).

Process
model

(Simulator)

Observation
model

The Bayesian inverse problem given observations y is then:

p(s, x|y) ∝ pG(y|s, x)pM(s|x)p(x) (1)

3

Bayesian inverse modeling

Let s = M(x, s0) represent a forward model (simulator) M with latent states
s, unknown or partially known inputs x, and observation operator y = G(s).

Process
model

(Simulator)

Observation
model

The Bayesian inverse problem given observations y is then:

p(s, x|y) ∝ pG(y|s, x)pM(s|x)p(x) (1)

3

Bayesian inverse modeling

Let s = M(x, s0) represent a forward model (simulator) M with latent states
s, unknown or partially known inputs x, and observation operator y = G(s).

Process
model

(Simulator)

Observation
model

The Bayesian inverse problem given observations y is then:

p(s, x|y) ∝ pG(y|s, x)pM(s|x)p(x) (1)

3

Machine learning in SBI

There are several ways ML can be applied within the framework of SBI:

• Low-dimensional embedding of high-dimensional input and output
spaces

• Emulation of the simulator using (possibly physics-informed) ML

• Data-driven estimation of the observation noise/error model

• Amortized inference via neural density estimators (NDEs)

4

Machine learning in SBI

There are several ways ML can be applied within the framework of SBI:

• Low-dimensional embedding of high-dimensional input and output
spaces

• Emulation of the simulator using (possibly physics-informed) ML

• Data-driven estimation of the observation noise/error model

• Amortized inference via neural density estimators (NDEs)

4

Machine learning in SBI

There are several ways ML can be applied within the framework of SBI:

• Low-dimensional embedding of high-dimensional input and output
spaces

• Emulation of the simulator using (possibly physics-informed) ML

• Data-driven estimation of the observation noise/error model

• Amortized inference via neural density estimators (NDEs)

4

Machine learning in SBI

There are several ways ML can be applied within the framework of SBI:

• Low-dimensional embedding of high-dimensional input and output
spaces

• Emulation of the simulator using (possibly physics-informed) ML

• Data-driven estimation of the observation noise/error model

• Amortized inference via neural density estimators (NDEs)

4

SimulationBasedInference.jl

SimulationBasedInference.jl is a software package in the Julia
programming language that aims to:

• Bridge the gap between data-driven and simulation-based
(Bayesian) statistical inference

• Provide a unified interface for embedding simulators into a Bayesian
modeling framework

• Facilitate rapid prototyping and development of custom inference
algorithms and hybrid modeling workflows

• Integrate with state-of-the-art software for probabilistic and
differentiable programming

5

SimulationBasedInference.jl

SimulationBasedInference.jl is a software package in the Julia
programming language that aims to:

• Bridge the gap between data-driven and simulation-based
(Bayesian) statistical inference

• Provide a unified interface for embedding simulators into a Bayesian
modeling framework

• Facilitate rapid prototyping and development of custom inference
algorithms and hybrid modeling workflows

• Integrate with state-of-the-art software for probabilistic and
differentiable programming

5

SimulationBasedInference.jl

SimulationBasedInference.jl is a software package in the Julia
programming language that aims to:

• Bridge the gap between data-driven and simulation-based
(Bayesian) statistical inference

• Provide a unified interface for embedding simulators into a Bayesian
modeling framework

• Facilitate rapid prototyping and development of custom inference
algorithms and hybrid modeling workflows

• Integrate with state-of-the-art software for probabilistic and
differentiable programming

5

SimulationBasedInference.jl

SimulationBasedInference.jl is a software package in the Julia
programming language that aims to:

• Bridge the gap between data-driven and simulation-based
(Bayesian) statistical inference

• Provide a unified interface for embedding simulators into a Bayesian
modeling framework

• Facilitate rapid prototyping and development of custom inference
algorithms and hybrid modeling workflows

• Integrate with state-of-the-art software for probabilistic and
differentiable programming

5

Why Julia?

• Julia (mostly) solves the so-called “two language problem” through
just-in-time (JIT) compilation.

• Basic syntax similar to MATLAB and python with performance often
close to or better than C/C++ and Fortran

• Highly flexible and robust type system that facilitates extensive synergy
between packages

• Excellent package and dependency management

• 100% free and open source

6

Why Julia?

• Julia (mostly) solves the so-called “two language problem” through
just-in-time (JIT) compilation.

• Basic syntax similar to MATLAB and python with performance often
close to or better than C/C++ and Fortran

• Highly flexible and robust type system that facilitates extensive synergy
between packages

• Excellent package and dependency management

• 100% free and open source

6

Why Julia?

• Julia (mostly) solves the so-called “two language problem” through
just-in-time (JIT) compilation.

• Basic syntax similar to MATLAB and python with performance often
close to or better than C/C++ and Fortran

• Highly flexible and robust type system that facilitates extensive synergy
between packages

• Excellent package and dependency management

• 100% free and open source

6

Why Julia?

• Julia (mostly) solves the so-called “two language problem” through
just-in-time (JIT) compilation.

• Basic syntax similar to MATLAB and python with performance often
close to or better than C/C++ and Fortran

• Highly flexible and robust type system that facilitates extensive synergy
between packages

• Excellent package and dependency management

• 100% free and open source

6

Why Julia?

• Julia (mostly) solves the so-called “two language problem” through
just-in-time (JIT) compilation.

• Basic syntax similar to MATLAB and python with performance often
close to or better than C/C++ and Fortran

• Highly flexible and robust type system that facilitates extensive synergy
between packages

• Excellent package and dependency management

• 100% free and open source
6

What if I don’t know Julia?

• That’s OK! Minimal Julia familiarity is required to use the package at a
basic level.

• It is possible to define a simulator that wraps code in other languages
like python, C, or Fortran.

• You can also consider similar recently developed python frameworks
like sbi1 and bayesflow2.

1https://sbi-dev.github.io/sbi/
2https://bayesflow.org/

7

What if I don’t know Julia?

• That’s OK! Minimal Julia familiarity is required to use the package at a
basic level.

• It is possible to define a simulator that wraps code in other languages
like python, C, or Fortran.

• You can also consider similar recently developed python frameworks
like sbi1 and bayesflow2.

1https://sbi-dev.github.io/sbi/
2https://bayesflow.org/

7

What if I don’t know Julia?

• That’s OK! Minimal Julia familiarity is required to use the package at a
basic level.

• It is possible to define a simulator that wraps code in other languages
like python, C, or Fortran.

• You can also consider similar recently developed python frameworks
like sbi1 and bayesflow2.

1https://sbi-dev.github.io/sbi/
2https://bayesflow.org/

7

Example: Linear ODE

using SimulationBasedInference , OrdinaryDiffEq

define dynamics
f(u,p,t) = -p[1]*u;
define "true" parameters
p = [0.2];
define simulation time span
tspan = (0.0 ,10.0);
initial state
u0 = [1.0]
define ODE problem
ode_prob = ODEProblem (f, u0 , tspan , p)

8

Example: Linear ODE

define the observable
t_save = 0.1:0.1:10.0
observable = ODEObservable (

:y, ode_prob , t_save , samplerate =0.01
)

define the " forward problem "
forward_prob = SimulatorForwardProblem (

ode_prob ,
observable ,
can add more observables here ...

)
9

Example: Linear ODE

define prior and likelihood (omitted for brevity)
simulator_prior = ...
likelihood = ...

define inference problem
inference_prob = SimulatorInferenceProblem (

forward_prob ,
forward_solver ,
simulator_prior ,
likelihood ,

);

10

Example: Linear ODE

solve with ensemble importance sampling
enis_sol = solve(inference_prob , EnIS ());

solve with ensemble smoother
esmda_sol = solve(inference_prob , ESMDA ());

solve with ensemble Kalman sampling
eks_sol = solve(inference_prob , EKS ());

solve with Hamiltonian Monte Carlo (HMC)
hmc_sol = solve(inference_prob , MCMC(NUTS ()));

11

Example: Linear ODE

12

Example: Degree-day snow modeling

Degree-day melt factor
2 3 4

Accumulation factor
0.55 0.60 0.65 0.70 0.75

Day of year
0 100 200 300

S
W

E
 /

m
m

0

100

200

EKS

SNPE

HMC

Pseudo-obs

Ground truth

Calibration of degree-day snow melt model from synthetic pseudo-observations 13

Example: Surface temperature inversion with EKS

1750 1800 1850 1900 1950 2000

T
em

pe
ra

tu
re

 /
°C

-18

-16

-14

-12

-10

-8

-6

-4
a. Reconstructed ground surface temperatures

Temperature / °C
-9.0-10.0-11.0

D
ep

th
 /

m

1

10

20

30

40

50

60

70

80

90

100

b. Predicted temperature profiles

No seasonal thaw
Seasonal thaw included
Air temp. at Tiksi (NOAA)
Regional air temp. (Mk3L/ERA-I)

Initial
Obs.

Groenke et al. 2024. Robust reconstruction of historical climate change from
permafrost boreholes. JGR: Earth Surface. In review.

14

Conclusions

• Simulation-based inference (SBI) provides a flexible framework for
combining data with physics-based models.

• There are numerous avenues for the application of ML in improving the
tractability of SBI in scientific workflows.

• SimulationBasedInference.jl provides a flexible and user-friendly
framework for applying SBI to scientific models both big and small.

15

Conclusions

• Simulation-based inference (SBI) provides a flexible framework for
combining data with physics-based models.

• There are numerous avenues for the application of ML in improving the
tractability of SBI in scientific workflows.

• SimulationBasedInference.jl provides a flexible and user-friendly
framework for applying SBI to scientific models both big and small.

15

Conclusions

• Simulation-based inference (SBI) provides a flexible framework for
combining data with physics-based models.

• There are numerous avenues for the application of ML in improving the
tractability of SBI in scientific workflows.

• SimulationBasedInference.jl provides a flexible and user-friendly
framework for applying SBI to scientific models both big and small.

15

Thank you!

brian.groenke@awi.de

16

	Introduction
	Conclusions

