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Bayesian inverse modeling

Let s = M(x, s0) represent a forward model (simulator) M with latent states
s, unknown or partially known inputs x, and observation operator y = G(s).
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The Bayesian inverse problem given observations y is then:

p(s, x|y) ∝ pG(y|s, x)pM(s|x)p(x) (1)
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Machine learning in SBI

There are several ways ML can be applied within the framework of SBI:

• Low-dimensional embedding of high-dimensional input and output
spaces

• Emulation of the simulator using (possibly physics-informed) ML

• Data-driven estimation of the observation noise/error model

• Amortized inference via neural density estimators (NDEs)
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SimulationBasedInference.jl

SimulationBasedInference.jl is a software package in the Julia
programming language that aims to:

• Bridge the gap between data-driven and simulation-based
(Bayesian) statistical inference

• Provide a unified interface for embedding simulators into a Bayesian
modeling framework

• Facilitate rapid prototyping and development of custom inference
algorithms and hybrid modeling workflows

• Integrate with state-of-the-art software for probabilistic and
differentiable programming
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Why Julia?

• Julia (mostly) solves the so-called “two language problem” through
just-in-time (JIT) compilation.

• Basic syntax similar to MATLAB and python with performance often
close to or better than C/C++ and Fortran

• Highly flexible and robust type system that facilitates extensive synergy
between packages

• Excellent package and dependency management

• 100% free and open source
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What if I don’t know Julia?

• That’s OK! Minimal Julia familiarity is required to use the package at a
basic level.

• It is possible to define a simulator that wraps code in other languages
like python, C, or Fortran.

• You can also consider similar recently developed python frameworks
like sbi1 and bayesflow2.

1https://sbi-dev.github.io/sbi/
2https://bayesflow.org/
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Example: Linear ODE

using SimulationBasedInference , OrdinaryDiffEq

# define dynamics
f(u,p,t) = -p[1]*u;
# define "true" parameters
p = [0.2];
# define simulation time span
tspan = (0.0 ,10.0);
# initial state
u0 = [1.0]
# define ODE problem
ode_prob = ODEProblem (f, u0 , tspan , p)
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Example: Linear ODE

# define the observable
t_save = 0.1:0.1:10.0
observable = ODEObservable (

:y, ode_prob , t_save , samplerate =0.01
)

# define the " forward problem "
forward_prob = SimulatorForwardProblem (

ode_prob ,
observable ,
# can add more observables here ...

)
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Example: Linear ODE

# define prior and likelihood ( omitted for brevity )
simulator_prior = ...
likelihood = ...

# define inference problem
inference_prob = SimulatorInferenceProblem (

forward_prob ,
forward_solver ,
simulator_prior ,
likelihood ,

);
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Example: Linear ODE

# solve with ensemble importance sampling
enis_sol = solve( inference_prob , EnIS ());

# solve with ensemble smoother
esmda_sol = solve( inference_prob , ESMDA ());

# solve with ensemble Kalman sampling
eks_sol = solve( inference_prob , EKS ());

# solve with Hamiltonian Monte Carlo (HMC)
hmc_sol = solve( inference_prob , MCMC(NUTS ()));
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Example: Linear ODE
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Example: Degree-day snow modeling
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Calibration of degree-day snow melt model from synthetic pseudo-observations 13



Example: Surface temperature inversion with EKS
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Groenke et al. 2024. Robust reconstruction of historical climate change from
permafrost boreholes. JGR: Earth Surface. In review.
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Conclusions

• Simulation-based inference (SBI) provides a flexible framework for
combining data with physics-based models.

• There are numerous avenues for the application of ML in improving the
tractability of SBI in scientific workflows.

• SimulationBasedInference.jl provides a flexible and user-friendly
framework for applying SBI to scientific models both big and small.
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Thank you!

brian.groenke@awi.de
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